非良基公理和非良基集合论的域
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

:国家社科基金项目(12BZX060)


The Non-Well-Founded Axioms and the Ranges of Non-Well-Founded Sets
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    正则互模拟是非良基公理和非良基集合论形成的基础,基于正则互模拟形成了一簇非良基公理。定义了三种正则互模拟≌*、≌t和≡V0,由它们生成的非良基公理AFA≌*、AFA≌t和AFA≡V0与经典的非良基公理FAFA、SAFA和AFA分别等价;非良基公理FAFA和AFA位于非良基公理簇的两端,SAFA处于FAFA和AFA之间;非良基公理FAFA、SAFA和AFA两两不相容;与非良基公理FAFA、SAFA、AFA相对应的外延力依次增强,而相对应的非良基集合论的域依次缩小。

    Abstract:

    Regular bisimulation is the foundation of the non-well-founded axioms and the non-well-founded set theories, and a family of non-well-founded axioms are based on it. This paper defines the regular bisimulations≌*, ≌t and ≡V0, shows the non - well-founded axioms AFA≌*, AFA≌t and AFA≡V0crrosponding to them are respectively equal to the non-well-founded axioms FAFA, SAFA and AFA; FAFA and AFA are at both ends of the family of non-well-founded , SAFA between them , and FAFA, SAFA and AFA are pairwise incompatible; The extensionalities of FAFA, SAFA and AFA increase incrementally , and their ranges decrease successively.

    参考文献
    相似文献
    引证文献
引用本文

姚从军,杨红梅,马跃如,杨俊明,唐松林,刘静.非良基公理和非良基集合论的域[J].湖南科技大学学报(社会科学版),2014,17(1):33-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-01-17