doi:10.13582/j.cnki.1672-7835.2025.03.013

数字技术创新如何影响中国城市经济韧性

——基于有调节的中介效应模型

吴建军,王晓峰,黄帆

(湖南科技大学 商学院,湖南 湘潭 411201)

摘 要:基于 2003—2021 年中国 281 个城市的面板数据,构建有调节的中介效应模型,解析数字技术创新对城市经济韧性的总体影响和作用机制。结果表明:数字技术创新显著提升了城市经济韧性,该结论通过了稳健性和内生性检验。异质性分析显示,在中西部城市、科技投入不足城市和资源型城市,数字技术创新对城市经济韧性的促进作用更显著。机制检验结果表明,数字技术创新通过提高创业活跃度提升城市经济韧性。进一步分析发现,信息化不仅能强化数字技术创新对城市经济韧性的积极影响,还能正向调节创业活跃度与城市经济韧性的关系,即信息化增强了创业活跃度的中介作用。拓展分析结果表明,数字技术创新对城市经济韧性产生正向空间溢出效应。

关键词:数字技术创新;城市经济韧性;创业活跃度;信息化;有调节的中介效应

中图分类号:F062.4 文献标志码:A 文章编号:1672-7835(2025)03-0105-11

一、引言及文献综述

建设韧性城市是统筹城市安全发展的关键路径,也是遵循城市演进规律的内在要求。国家"十四五"规划首次将"韧性城市"纳入国家战略部署,党的二十大报告和 2023 年中央经济工作会议进一步明确提出打造宜居、韧性、智慧城市的战略目标。当前,全球宏观经济发展面临诸多不确定性,自然灾害和公共安全事件频发,全球各国日益关注经济系统应对冲击的"韧性"表现。以人工智能、区块链、云计算和大数据(ABCD)为代表的数字技术迅速发展,正与中国经济发展方式转变形成历史性交汇。数字技术创新正成为推动经济运行模式转换的重要客观条件。《数字中国发展报告(2022 年)》指出,"数字技术创新是数字中国建设的核心动力"。随着数字技术创新与实体经济深度融合,数字化产品与服务不断渗透至城市的各个领域,突显出数字技术创新在数字化转型中的重要作用。数字技术创新作为决定产业发展、经济增长和国家综合竞争力的关键因素①,不仅深刻变革了城市生产、生活和治理方式,也为提升城市经济韧性创造了全新发展机遇。如何有效发挥数字技术创新的作用,推动城市经济韧性的稳步提升,已成为当前学界和政策界关注的热点议题。厘清数字技术创新与城市经济韧性的内在逻辑,有助于深入把握数字化转型对城市高质量发展的赋能路径。

"韧性"最早应用于物理学领域,后被广泛运用于经济学、管理学和社会学等学科研究。经济韧性 作为一种适应性韧性,有能力在抵御冲击、适应冲击及恢复发展等阶段进行有序调整^②,其内涵主要包

收稿日期:2024-11-10

基金项目:湖南省社会科学基金重大项目(23WTA15);湖南省研究生科研创新项目(LXBZZ2024288)

作者简介:吴建军(1975一),男,湖北天门人,博士,教授,博士生导师,主要从事开放经济与技术进步研究。

①贺俊:《数字技术创新体系的特征与政府作用》,《求索》2023年第5期。

②Doran J, Fingleton B. "US Metropolitan Area Resilience: Insights from Dynamic Spatial Panel Estimation", *Environment & Planning*, 2018, 50(1): 111-132.

括抵御力、恢复力、再组织力和更新力^①。城市经济韧性是指城市经济系统在遭受内外部冲击后,通过调整结构、转换模式,维持稳定或恢复发展的能力。从测度方法来看,相关学者采用敏感指数法^②、反事实模拟估计法^③和综合评价指标体系法^④对城市经济韧性进行度量。从影响因素来看,数字经济^⑤和数字金融^⑥能显著提升城市经济韧性,数字技术创新^⑦对城市经济韧性的驱动作用亦备受学界关注。关于数字技术创新的度量方式及其经济效应机制,已成为当前研究的重点方向。有学者构建数字技术创新综合评价指标体系[®],有学者采用数字专利作为衡量指标^⑨^⑩。相关研究表明,数字技术创新不仅能提升企业绩效^⑩、助力企业高质量发展[®],还能推动构建现代化产业体系^⑥。

通过梳理文献,发现当前研究成果仍存在三点不足。第一,研究视角方面,现有研究多聚焦于经济与金融的数字化转型,如数字经济与数字金融,而对融合数字化与技术创新优势的数字技术创新关注不足。数字技术的广泛应用催生了数字技术创新的市场需求,作为数字化转型与技术变革交汇的重要动力,数字技术创新对城市经济韧性的影响机制缺乏系统探讨。第二,经验证据方面,已有研究多从微观企业绩效或中观产业体系角度评估数字技术创新的经济效应,缺乏关于其影响城市经济韧性的实证检验,尤其是对数字技术创新赋能城市经济韧性的空间溢出效应研究明显不足。第三,理论机制方面,尽管已有学者指出数字技术创新有利于提升城市经济韧性⁶。但相关研究主要侧重于中介机制,尚未涉及信息化在其中可能发挥的调节效应。当前,信息化已进入加快数字化发展、建设数字中国的新阶段,尚缺乏将信息化纳入调节变量的理论与政策框架探索。

本文基于 2003—2021 年中国 281 个城市的面板数据,从以下三方面对现有研究进行拓展:第一,在研究视角上,将数字技术创新引入城市经济韧性分析视野,拓展了其在城市层面经济效应研究的应用范畴,丰富了城市韧性影响因素的识别。第二,在理论框架上,构建了包含创业活跃度中介效应与信息化调节效应的分析框架,揭示了数字技术创新影响城市经济韧性的作用机制,丰富了相关领域的理论研究。第三,在研究方法上,综合采用有调节的中介效应模型和空间杜宾模型,分别识别数字技术创新的作用路径与空间溢出效应,增强了研究结论的稳健性与研究内容的拓展性。

二、理论分析与研究假说

(一)数字技术创新对城市经济韧性的直接效应

数字技术创新是指企业或组织以数字技术为基础,开发新产品、新流程以及新商业模式的过程及结

①Martin R, Sunley P. "On the Notion of Regional Economic Resilience: Conceptualization and Explanation", *Journal of Economic Geogra-* phy, 2015(15):1-42.

②陈安平:《集聚与中国城市经济韧性》,《世界经济》2022年第1期。

③卓乘风,毛艳华:《制度型开放与城市经济韧性》,《国际贸易问题》2023年第4期。

④张朝华,徐鹏杰:《数据要素集聚能提升城市经济韧性吗——来自大数据综合试验区建设的经验证据》,《宏观经济研究》2024年第6期。

⑤于斌斌,王志刚:《城市何以更加"韧性"——数字经济的赋能效应》,《地理研究》2025年第2期。

⑥杜文豪:《数字金融对经济韧性的影响研究》,《商业经济》2025年第4期。

②曹贤忠,吕磊:《长三角数字技术创新网络时空演化特征及其经济韧性效应研究》,《地理科学进展》2025年第1期。

⑧杨名彦,浦正宁:《我国省际数字技术创新水平测算及区域差异研究》,《统计研究》2024年第2期。

Mann K, Püttmann L. "Benign Effects of Automation: New Evidence from Patent Texts", Review of Economics and Statistics, 2023,105 (3): 562-579.

①Tsou H, Chen J. "How does Digital Technology Usage Benefit Firm Performance? Digital Transformation Strategy and Organisational Innovation as Mediators", Technology Analysis & Strategic Management, 2023, 35(9): 1114-1127.

⑫黄勃,李海彤,刘俊岐,等:《数字技术创新与中国企业高质量发展——来自企业数字专利的证据》,《经济研究》2023年第3期。

⑬娜梅雅,宋培,艾阳:《数字技术创新如何促进现代化产业体系构建——兼论收入分配优化的调节效应》,《山西财经大学学报》 2024 年第11 期。

果^①。有韧性的经济体通常可以在事前预测、事中应对以及事后恢复等阶段进行动态调整^②。在事前预测阶段,数字技术创新可用于对城市关键基础设施和运行环境进行实时监测,辅助构建城市风险预判与动态模拟系统,从而增强对各类冲击的前瞻防御能力。在事中应对阶段,数字技术创新提升了城市资源配置的效率,使城市经济系统运行更加稳定、高效与智能,增强其应对经济波动的适应性。在事后恢复阶段,数字技术创新打破了物理空间限制,重构了政府、企业与公众协作机制,减弱了物理隔离对传统协作网络的负面影响,为城市经济系统的快速恢复与调整提供了技术支撑。综上,数字技术创新在城市经济韧性动态调整的各个阶段均发挥着关键作用,故本文提出假说:

H1:数字技术创新直接促进城市经济韧性水平提升。

(二)创业活跃度的中介效应

数字技术创新打破了传统创新的边界,催生了大量新建企业与创新项目,不仅为城市经济注入活力,也为其多元化发展提供了重要支撑,故数字技术创新对城市创业活跃度有显著正向影响^③。首先,数字技术创新为创业者提供低成本、高效率的工具与信息资源,有效降低了创业门槛与试错成本,提高了创业效率与成功率。其次,数字技术的广泛应用为互联网、电子商务与移动互联等领域带来新的创业机会,显著激发了城市创业活跃度。最后,数字技术的应用有助于提升市场透明度、缓解信息不对称,使创业者更易获取资金、技术与人才支持,从而推动创业生态系统良性发展。

创业活跃度是提升经济韧性的重要动力源泉^④,对理解城市经济韧性提升的路径具有重要意义。 首先,在创业活跃度较高的城市,创业者之间的交流与合作更加频繁,通过不断开发高竞争力的产品与 服务,推动城市经济结构更加灵活和多元,增强系统对不确定性环境的响应与适应能力。其次,高创业 活跃度有助于吸引风险投资和创业资本集聚,带动金融资源流向初创企业,形成资金的良性循环,进而 提升城市经济系统的稳定性与抗压性⑤。最后,创业活跃度的提升反映出城市创业生态系统的成熟水 平,使其在面对外部冲击时,能够通过产品创新、技术创新和服务创新等多维创新手段缓释冲击影响,从 而实现经济韧性的持续提升⑥。因此本文提出假说:

H2: 数字技术创新通过提高创业活跃度提升城市经济韧性。

(三)信息化的调节效应

信息化水平是衡量地区信息技术应用程度和数字化渗透深度的核心指标^②。《"十四五"国家信息化规划》明确提出,信息化发展水平大幅跃升,数字基础设施全面夯实,数字技术创新能力显著增强。《国家信息化发展报告(2023年)》指出,信息化发展给生产力和生产关系带来前所未有的变革,有力驱动着技术革命性突破。信息化有助于生产系统实现自我调节,降低交易成本,进而提升数字技术创新水平[®]。因此,信息化作为数字化基础设施的重要体现,是城市数字技术创新的重要支撑条件。信息化在数字技术创新促进城市经济韧性过程中发挥着关键的调节作用,其调节机制主要体现在以下三个方面:首先,信息化提高了城市数字技术创新应用的普及程度,实现了各类信息资源的有效整合与精准运用,进而降低了城市经济运行中的交易成本,优化了要素配置,提高了整体生产效率,从而增强了数字技术创新赋能城市经济韧性的效果。其次,信息化水平高的城市,其数字基础设施更为完善,为数字技术创

①Yoo Y, Boland R, Lyytinen K, et al. "Organizing for Innovation in the Digitized World", Organization Science, 2012, 23(5): 1398-1408.

②Sensier M, Bristow G, Healy A. "Measuring Regional Economic Resilience across Europe: Operationalizing a Complex Concept", Spatial Economic Analysis, 2016(11): 1-24.

④李思儒,杨云霞,曹小勇:《数字型跨国并购与创业行为研究》,《国际贸易问题》2022年第7期。

⑤谭燕芝,海霞:《金融集聚能有效提升县域经济韧性吗?——基于湖南省88个县(市)的空间效应分析》,《湖南师范大学社会科学学报》2024年第2期。

⑥罗红艳,杨莉,杨瑞兰,等:《数字经济、创新创业活跃度与城市经济韧性》,《管理学刊》2025年第2期。

⑦陈帅,王智鹏,侯孟阳,等:《国家重点生态功能区转移支付的效应评估——基于经济发展、公共服务供给与生态环境治理视角》,《中国人口·资源与环境》2024年第10期。

⑧郑浦阳:《政府数据开放、地区要素培育与企业数字技术创新》,《财经科学》2024年第9期。

新发展提供了坚实基础,以及为数字技术创新赋能城市经济韧性提升创造良好条件,使得城市在面对经济冲击时保持稳健发展态势。最后,信息化还提升了数字技术人才的信息素养,通过吸引与培养数字技术人才,完善城市人才链,为数字技术创新赋能城市经济韧性提升提供持续的智力支撑。据此,本文提出假说:

H3:信息化在数字技术创新提升城市经济韧性过程中发挥正向调节作用。

(四)有调节的中介效应

信息化不仅强化数字技术创新对城市经济韧性的驱动效应,还能正向调节创业活跃度与城市经济 韧性的关系。首先,信息化的提升缓解了信息不对称,使创业者能够更加高效地获取市场与政策信息, 有助于提升创业决策的科学性和精准性,从而增强创业活跃度对城市经济韧性的影响力^①。其次,信息 化促进了金融资源的空间集聚与功能完善。一方面,信息化提高了金融信息的获取与传递效率,降低了 交易摩擦与时间成本,提高了金融市场体系服务创业的能力。另一方面,信息化支持金融机构创新业务 模式,拓展服务半径,吸引更多创业者进入金融集聚区,从而进一步增强创业活跃度对城市经济韧性的 正向推动^②。最后,信息化促进了创业知识与模式的加速扩散与复制,提升了全社会对新技术、新业态 的接受度,优化了创业生态系统,构建了有利于企业成长与城市抗冲击能力提升的外部支持体系,进而 强化创业活跃度对城市经济韧性的驱动效应。故本文提出假说:

H4:信息化对创业活跃度在数字技术创新与城市经济韧性关系中的中介效应具有正向调节作用。

(五)数字技术创新赋能城市经济韧性的空间溢出效应

数字技术创新打破了空间限制,加速了知识在经济社会中的扩散,促进了人力、资本与技术等生产要素的跨区域流动,从而对城市经济韧性产生显著的空间溢出效果。从技术溢出效应视角看,数字技术创新水平较高的城市能通过技术扩散引导邻近城市提升生产效率,并激发其模仿性技术采纳行为³,从而增强邻近城市的创新能力与经济韧性。从经济网络联系视角看,数字技术创新不仅提升了单个城市的经济韧性,还通过商业活动、供应链协同与区域贸易等经济活动共享创新成果,从而提升邻近城市经济韧性。从基础设施与公共服务视角看,数字技术创新优化了城市间交通、通讯、气象监测等关键基础设施,这些服务的升级不仅支撑本地城市的经济韧性提升,也通过服务外溢效应惠及邻近城市,从而提升邻近城市的经济韧性水平。故本文提出假说:

H5: 数字技术创新对城市经济韧性产生正向空间溢出效应。

综上,本文构建了数字技术创新与城市经济韧性之间的理论分析框架图(图1)。数字技术创新对城市经济韧性产生直接影响,创业活跃度扮演中介变量角色。信息化作为重要调节变量,不仅能正向调节数字技术创新对城市经济韧性的促进作用,还能强化创业活跃度与城市经济韧性之间的关系。此外,数字技术创新还对城市经济韧性产生空间溢出效应。

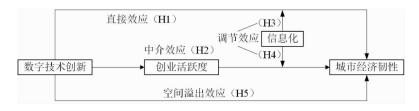


图 1 数字技术创新影响城市经济韧性的理论分析框架

①周慧,杨泽锋,崔祥民,等:《数字经济发展对城市经济韧性的影响机制研究——基于企业家精神的中介效应》,《软科学》2024 年第 10 期。

②李淑芬:《金融集聚、创新创业活跃度与城市经济韧性》,《经济经纬》2023年第4期。

③唐松,赖晓冰,黄锐:《金融科技创新如何影响全要素生产率:促进还是抑制?——理论分析框架与区域实践》,《中国软科学》 2019 年第7期。

三、研究设计

(一)模型设定

1.基准回归模型

为验证假说 H1,探究数字技术创新对城市经济韧性的直接影响,构建基准回归模型:

$$res_{i,t} = \alpha_0 + \alpha_1 dti_{i,t} + \alpha_2 control_{i,t} + u_i + v_t + \varepsilon_{i,t}$$
 (1)

式(1)中,被解释变量 $res_{i,t}$ 表示 t 时期 i 城市的经济韧性,核心解释变量 $dii_{i,t}$ 表示 t 时期 i 城市的数字技术创新。 $control_{i,t}$ 为一系列控制变量; α_0 为常数项, α_1 和 α_2 为变量的回归系数; u_i 表示城市固定效应; v_i 代表时间固定效应; ε_i 为随机扰动项。

2.中介效应模型

为验证假说 H2,判断数字技术创新是否通过创业活跃度提升城市经济韧性,构建中介效应模型:

$$med_{i,t} = \beta_0 + \beta_1 dti_{i,t} + \beta_2 control_{i,t} + u_i + v_t + \varepsilon_{i,t}$$
(2)

$$res_{i,t} = \eta_0 + \eta_1 dti_{i,t} + \eta_2 med_{i,t} + \eta_3 control_{i,t} + u_i + v_t + \varepsilon_{i,t}$$

$$\tag{3}$$

其中 $med_{i,i}$ 为中介变量, $\beta_0 \setminus \eta_0$ 为常数项, $\beta_1 \setminus \beta_2 \setminus \eta_1 \setminus \eta_2 \setminus \eta_3$ 为对应变量的估计系数。

3.调节效应模型

为验证假说 H3, 探讨信息化能否调节数字技术创新与城市经济韧性的关系, 构建调节效应模型:

$$res_{i,t} = \lambda_0 + \lambda_1 dti_{i,t} + \lambda_2 mod_{i,t} + \lambda_3 dti_{i,t} \times mod_{i,t} + \lambda_4 control_{i,t} + u_i + v_t + \varepsilon_{i,t}$$

$$\tag{4}$$

式(4)中, $mod_{i,i}$ 为调节变量, $dii_{i,i} \times mod_{i,i}$ 为核心解释变量与调节变量的交互项, λ_0 为常数项, λ_1 、 λ_2 、 λ_3 、 λ_4 表示对应变量的回归系数。

4.有调节的中介效应模型

为验证假说 H4,分析信息化在创业活跃度与城市经济韧性之间的调节作用。参考王丽平等^①的方法,结合式(3)和式(4),构建有调节的中介效应模型:

$$res_{i,t} = \theta_0 + \theta_1 dti_{i,t} + \theta_2 med_{i,t} + \theta_3 mod_{i,t} + \theta_4 med_{i,t} \times mod_{i,t} + \theta_5 control_{i,t} + u_i + v_t + \varepsilon_{i,t}$$
 (5)

式(5)中, $med_{i,i} \times mod_{i,i}$ 表示中介变量与调节变量的交互项, θ_0 为常数项, $\theta_1 \setminus \theta_2 \setminus \theta_3 \setminus \theta_4 \setminus \theta_5$ 表示变量的估计系数。

(二)变量选择

1.被解释变量:城市经济韧性

经济韧性主要考察系统的持续变化,反映了经济体受到冲击后的动态恢复过程。本文参考 Martin和 Gardiner 的思路^②,基于经济核心指标随时间调整过程的连续性,用敏感性指数表征城市经济韧性。借鉴卢现祥和滕宇汯的方法^③,以实际 GDP 为核心指标,将全国城市的实际 GDP 变化作为可以比较的基准。每个城市实际 GDP 的相对变化与基准的差异就是相对韧性指标,公式如下:

$$res_{i,t} = (LnGDP_{i,t} - LnGDP_{i,t-k}) - (LnGDP_t - LnGDP_{t-k})$$
(6)

式(6)中, $GDP_{i,t}$ 表示 t 时期城市 i 的实际 $GDP_{i,t}$ -k 表示 k 年之前的实际 $GDP_{i,t}$ - gDP_{i,t

2.核心解释变量:数字技术创新

借鉴李影的研究思路^④,以数字经济发明专利授权数作为衡量数字技术创新的基础指标。主要有

①王丽平,张赟昊,武瑞娟:《转型有"道",中小企业如何跨越数字鸿沟?——一个有调节的中介效应模型》,《管理评论》2025 年第 2 期。

②Martin R, Gardiner B. "The Resilience of Cities to Economic Shocks: A Tale of Four Recessions (and the Challenge of Brexit)", *Papers in Regional Science*, 2019, 98(4): 1801–1832.

③卢现祥,滕宇汯:《创新驱动政策如何提升城市经济韧性:基于有效市场和有为政府的机制分析》,《中国软科学》2023年第7期。 ④李影:《中国城市数字技术创新水平的时空演变特征及趋势预测》,《地理研究》2024年第3期。

两点原因:第一,发明专利面临更严格的审查制度,更能反映创新成果的技术含量,可以更好地衡量实质性技术创新。第二,授权专利经过了专利局实质性审查,体现了专利质量,因此获得授权的数字经济发明专利最能直观代表数字技术创新。指标计算方法为:Ln(1+数字经济发明专利授权数)。

3.中介变量:创业活跃度

参考白俊红等的方法^①,用每百人拥有新成立企业数量衡量城市创业活跃度(entre)。

4.调节变量:信息化

借鉴现有学者的做法,分别以邮政业务收入与 GDP 之比^②、电信业务收入^③作为城市信息化水平的替代变量。为减弱数据的异方差性,对电信业务收入取对数。

5.控制变量

劳动生产率(prod):实际 GDP 比从业人数。城市化水平(urb):城镇化率。人力资本(hum):每万人高等院校在校学生人数。财政自给率(fis):地方财政一般预算内收入与地方财政一般预算内支出之比。金融发展水平(fin):年末金融机构贷款余额除以 GDP。环境规制(env):基于工业"三废"(工业废水、工业二氧化硫、工业烟粉尘)排放量,用熵值法计算环境规制综合指数。

(三)数据说明

由于工业"三废"指标自 2003 年才公布,而年鉴中各城市工业废水排放量自 2021 年后不再更新,故选择 2003—2021 年作为观测期,样本涵盖中国 281 个地级以上城市。原始数据来源于《中国城市统计年鉴》以及各省市统计年鉴、统计公报,数字经济发明专利授权数来源于中国研究数据服务平台(CNRDS),每年新成立企业数量来源于全国企业信用信息公示系统。实际 GDP 以 2000 年为基期的平减指数进行处理,缺失数据采用线性插值法补齐。

四、实证结果分析

(一)典型事实

为探究数字技术创新和城市经济韧性的关系特征,本文根据历年城市数字技术创新与城市经济韧性的平均值绘图,并观察两者的变化趋势。如图 2 所示,观测期内数字技术创新平均值呈现逐年递增趋势,原因在于各城市数字经济规模持续壮大,数字技术创新能力不断提升。城市经济韧性平均值表现出一定波动性,整体呈现缓慢增长态势,并最终趋于平稳。可能由于经济波动引起城市经济系统内部结构和增长动力的变化,影响到城市经济的长期增长路径,从而改变城市经济韧性。

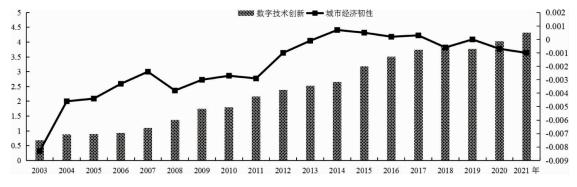


图 2 数字技术创新和城市经济韧性的均值变化趋势

(二)基准回归

本文采用双向固定效应模型,以控制时间与个体异质性。为进行对照分析,表1中列(1)和列(2)

①白俊红,张艺璇,卞元超:《创新驱动政策是否提升城市创业活跃度——来自国家创新型城市试点政策的经验证据》,《中国工业经济》2022 年第 6 期。

②彭羽,丁佰林,杨黥:《公共数据开放是否促进了城市层面的外商直接投资流入》,《国际贸易问题》2025年第2期。

③王晶晶,杨奕晨,陈金丹:《数字服务业集聚对城市创新效率的影响:本地效应与空间溢出》,《科技进步与对策》2023年第20期。

未纳入控制变量,列(3)和列(4)加入了控制变量,列(2)和列(4)固定了时间和个体效应。检验结果显示,列(4)中核心解释变量的估计系数在1%水平显著为正,说明数字技术创新与城市经济韧性之间存在正相关关系。数字技术创新每增加1个单位,城市经济韧性会提升0.0018个单位,因此数字技术创新显著提升了城市经济韧性,验证了假说1。

变量	(1)	(2)	(3)	(4)
1.:	0.000 4 * * *	0.000 7	0.001 0 * * *	0.001 8 * * *
dti	(0.000 2)	(0.000 5)	(0.000 3)	(0.000 5)
控制变量			控制	控制
双向固定效应	NO	YES	NO	YES
样本量	5 339	5 339	5 339	5 339
R^2	0.001 3	0.179 5	0.022 3	0.217 4

表 1 基准回归检验

注:()内为标准误,*、**和***分别表示在10%、5%和1%水平上显著。下表同。

(三)稳健性检验

第一,缩尾处理。鉴于异常值可能对回归结果造成偏误,对所有连续性变量进行 1%的双边缩尾后,在列(1)中回归。第二,剔除特殊样本。考虑到直辖市、省会城市和副省级城市的行政等级特殊性,因此在第(2)列的回归分析中剔除这些样本。第三,排除特殊年份。鉴于 2003 年非典疫情、2008 年全球金融危机、2020 年新冠疫情全面爆发等特殊事件可能对回归结果造成影响,截取 2009—2019 年样本,在列(3)中拟合回归。第四,增加控制变量。进一步控制经济发展水平、人均道路面积、产业结构、能源结构和对外开放水平,在列(4)中回归。第五,替换核心解释变量。用各城市数字经济发明专利申请数替换数字经济发明专利授权数,重新衡量数字技术创新,并将其带人列(5)进行回归分析。表 2 中核心解释变量的参数估计值在 1%水平上显著为正,验证了基准回归结果的稳健性。

表 2 的检验结果显示,在经过缩尾处理、剔除特殊样本、排除特殊年份、增加控制变量以及替换核心解释变量后,得到的估计系数仍在 1%水平显著为正,说明数字技术创新对城市经济韧性的正向影响十分稳健。

变量 一	(1)	(2)	(3)	(4)	(5)
	缩尾处理	剔除特殊样本	排除特殊年份	增加控制变量	替换核心解释变量
dti	0.001 3 * * *	0.001 9 * * *	0.002 1 * * *	0.002 0 * * *	0.002 8 * * *
	(0.000 5)	(0.000 6)	(0.000 8)	(0.000 5)	(0.000 6)
控制变量	控制	控制	控制	控制	控制
双向固定效应	YES	YES	YES	YES	YES
样本量	5 339	4 674	3 091	5 339	5 339
R^2	0.238 7	0.225 1	0.359 4	0.238 5	0.219 2

表 2 稳健性检验

(四)内生性检验

解释变量滞后处理。经济韧性更强的城市可能更重视数字技术创新,为缓解可能由反向因果关系引起的内生性偏误,将核心解释变量的滞后一期值、核心解释变量的滞后二期值、控制变量的滞后一期值分别带入模型拟合回归,结果见表 3 的列(1)至列(3)。

工具变量法。由于历史数据具有排他性,且专利从提交申请到获得授权存在时间周期,故用 1984 年每百人固定电话数与数字经济发明专利申请数的滞后一期值交乘,并将其作为工具变量。该工具变量与核心解释变量存在一定相关性,且对观测期内被解释变量的影响较小,检验结果见列(4)。

表 3 中列(1)至列(3)的检验结果表明,在将核心解释变量、控制变量的滞后项带入模型后,参数估计值大小及方向无明显变化,排除了反向因果产生的内生性问题。列(4)的检验结果显示,Anderson LM统计值为 0.000 0,且 C-D Wald F 统计量大于弱识别检验 10%水平的临界值 16.38,通过了"不可识别检

验"和"弱工具变量检验",因此选择的工具变量具备合理性。核心解释变量的参数估计值在 1%水平显著为正,说明工具变量有效缓解了模型的内生性偏误。

本目	(1)	(2)	(3)	(4)
变量	核心解释变量滞后一期	核心解释变量滞后二期	控制变量滞后一期	工具变量
	0.002 0 * * *	0.002 7 * * *	0.003 0 * * *	0.008 9 * * *
dti	(0.000 5)	(0.000 6)	(0.000 6)	(0.002 6)
Anderson LM				227.393
statistic				[0.000 0]
C-D Wald F				236.920
statistic				{16.38}
控制变量	控制	控制	控制	控制
双向固定效应	YES	YES	YES	YES
样本量	5 058	4 777	5 058	5 058
R^2	0.214 2	0.224 0	0.233 7	0.038 7

表 3 内生性检验

注:[]内为 p 值, | | 内为 Stock-Yogo 弱识别检验 10%水平的临界值。

(五)异质性分析

1.地理位置

根据各城市所处地理位置,将样本划分为东部、中部和西部城市,再进行分组回归。如表 4 所示,中部城市和西部城市的核心解释变量在 1%水平显著为正,而东部城市样本中核心解释变量的估计系数不显著,说明数字技术创新对中西部城市经济韧性的促进作用更强。主要原因在于中西部城市经济发展相对滞后、生态环境脆弱、自然灾害多样。数字技术创新为中西部城市提供了跨越式发展机遇,一方面直接提高城市应对灾害的治理能力,另一方面助力产业转型和结构优化,推动了灾后经济恢复与可持续发展。因此,数字技术创新对中西部城市经济韧性水平提升产生更积极的影响。

2.科技投入

以城市科技投入强度(科技支出与地方一般公共预算支出之比)均值为界限,将样本划分为科技投入强度高和科技投入强度低两组。表 4 中分组回归结果显示,核心解释变量的估计系数均为正值。科技投入强度低的城市样本中 dti 的参数估计值为 0.002 9,且通过 1%水平的显著性检验,这说明数字技术创新更有利于提升科技投入强度不足城市的经济韧性。原因在于科技投入强度不够的城市有较强的内生动力开展数字技术创新,导致城市抵御冲击、吸收冲击的范围更大,大幅提高了城市遭受冲击后的适应和恢复速度,故数字技术创新对科技投入强度不足城市经济韧性的驱动效应更显著。

3.资源禀赋

根据国务院印发的《全国资源型城市可持续发展规划(2013—2020年)》,将样本分为资源型城市和非资源型城市。表 4 的检验结果显示,资源型城市样本中 dti 的估计系数为 0.003 9 且在 1%水平显著,非资源型城市样本中 dti 的估计系数为-0.001 1,这说明数字技术创新对资源型城市经济韧性的提升效果更好。原因在于资源型城市面临转型发展,为了打破资源约束格局,更有动力探索新技术、谋求新路径,故数字技术创新对资源型城市经济韧性的提升效应更强。

变量 一	地理位置			科技投入强度		资源型城市	
	东部	中部	西部	高	低	否	是
dti	0.000 4	0.004 2 * * *	0.003 3 * * *	0.001 2	0.002 9 * * *	-0.001 1*	0.003 9 * * *
	(0.0009)	(0.001 0)	(0.001 0)	(0.001 1)	(0.0008)	(0.0007)	(0.0009)
控制变量	控制	控制	控制	控制	控制	控制	控制
双向固定效应	YES	YES	YES	YES	YES	YES	YES
样本量	1 900	1 900	1 539	1 765	3 574	3 211	2 128
R^2	0.221 4	0.251 3	0.363 0	0.275 5	0.285 8	0.196 4	0.270 6

表 4 异质性分析

(六)机制检验

1. 中介效应

为探究创业活跃度的中介效应,对式(2)和式(3)进行实证检验。分析表5中列(1)检验结果,发现核心解释变量的参数估计值为0.0383,且在1%水平显著为正,说明每提升1个单位的数字技术创新,将会提高0.0383个单位的创业活跃度。列(2)显示,创业活跃度的估计系数为0.0019,即每提升一个单位的创业活跃度,就会提升0.0019个单位的城市经济韧性。由于该列中 dti 的回归系数(0.0017)小于基准回归中 dti 的回归系数(0.0018),因此创业活跃度在数字技术创新与城市经济韧性之间发挥中介效应,验证了假说 H2。

2.调节效应

为考察信息化的调节效应,将测度城市信息化水平的两个变量分别带入式(4)进行检验^①。列(3)中,dti×info 的参数估计值为 0.114 6,且在 1%水平显著。列(4)中,dti×info 的参数估计值为 0.000 4,且通过了 10%水平的显著性检验。交互项系数与核心解释变量的估计系数符号一致,说明信息化在数字技术创新提升城市经济韧性过程中发挥正向调节作用,验证了假说 H3。

3.有调节的中介效应

理论分析表明,信息化影响创业活跃度与城市经济韧性之间的正向关系。为验证这一机制,对式(5)进行检验。列(5)和列(6)的回归结果显示,核心解释变量和中介变量的估计系数显著为正。列(5)中,entre×info 的参数估计值为 0.131 8,通过了 10%的显著性检验。列(6)中,entre×info 的参数估计值为 0.001 4 且在 1%水平上显著。由于交互项与中介变量的估计系数符号一致,因此信息化对创业活跃度的中介效应发挥正向调节作用,假说 H4 得到验证。

	(1)	(2)	(3)	(4)	(5)	(6)
变量	entre	res	res	res	res	res
	中介效应		调节效应		有调节的中介效应	
7	0.038 3 * * *	0.001 7 * * *	0.001 7 * * *	0.001 5 * * *	0.001 6***	0.001 4 * *
dti	(0.012 1)	(0.000 5)	(0.000 5)	(0.000 6)	(0.000 5)	(0.000 6)
		0.001 9 * * *			0.001 7***	0.001 3*
entre		(0.000 6)			(0.000 6)	(0.0007)
Live C			0.114 6 * * *	0.000 4*		
$dti \times info$			(0.032 6)	(0.0002)		
6					0.131 8*	0.001 4 * * *
$entre \times info$					(0.072 5)	(0.000 5)
控制变量	控制	控制	控制	控制	控制	控制
双向固定效应	YES	YES	YES	YES	YES	YES
样本量	5 339	5 339	5 339	5 339	5 339	5 339
R^2	0.572 2	0.218 8	0.219 3	0.218 6	0.219 4	0.220 7

表 5 机制检验

五、拓展分析:空间溢出效应

(一)空间相关性

在验证数字技术创新对城市经济韧性的空间溢出效应前,先进行 Moran's I 检验。结果表明,观测期内数字技术创新和城市经济韧性的 Moran's I 值大于 0,且在 1%水平区间显著^②,这说明数字技术创新与城市经济韧性存在正向空间依赖关系。

①信息化变量选取时,表 5 中列(3)和列(5)用邮政业务收入与 GDP 之比,列(4)和列(6)用电信业务收入对数值。

②因篇幅所限,结果留存备索。

(二)空间计量回归

LM 检验中,空间滞后模型(SAR)与空间误差模型(SEM)的 p 值显著,故采用考虑空间滞后项和空间误差项的空间杜宾模型(SDM)。Wald 检验与 LR 检验结果均在 1%水平上显著,拒绝 SDM 模型退化成 SAR 或 SEM 模型的假设。对模型进一步检验,发现控制时间与空间因素的双向固定效应模型更优。式(7)为空间杜宾模型表达式,其中 W 表示空间权重矩阵(包括地理距离反距离矩阵、经济地理权重矩阵与经济地理嵌套矩阵),ρ 代表空间自相关系数。

$$res_{i,t} = \varphi_0 + \varphi_1 dti_{i,t} + \varphi_2 W \times dti_{i,t} + \rho W \times res_{i,t} + \varphi_3 control_{i,t} + u_i + v_t + \varepsilon_{i,t}$$
 (7)

检验结果显示①,ρ的参数估计值在1%水平上显著为正,说明城市经济韧性受本地上一年经济韧性的影响,存在正向空间自回归效应。因此经济韧性较强的城市通过空间溢出效应带动邻近城市提升经济韧性。空间交互项 W×dti 的估计系数显著为正,说明数字技术创新对城市经济韧性产生正向空间外溢。直接效应、间接效应和总效应真实反映了数字技术创新对城市经济韧性的空间溢出效果。从估计系数大小来看,间接效应大于直接效应,这表明数字技术创新对邻近城市的空间溢出效应比本地城市更大。原因在于数字技术创新的普及与应用使知识和技术的传播速度加快,扩散效应导致邻近城市获得更多信息和资源,形成更完善的产业链和供应链。总效应是直接效应和间接效应的加总,其参数估计值在1%水平上显著为正,说明数字技术创新对城市经济整体韧性产生正向空间外溢效果。原因在于数字技术创新能促进城市间的信息交流与合作,推动形成更紧密的创新网络,从而增强城市应对风险的抵抗力和恢复力。因此,数字技术创新对城市经济韧性产生正向空间溢出效应,假说 H5 得到验证。

六、结论与启示

本文基于 2003—2021 年中国 281 个城市的面板数据,构建有调节的中介效应模型,考察数字技术创新对城市经济韧性的影响。主要结论如下:第一,数字技术创新显著促进城市经济韧性提升。在进行缩尾处理、剔除异常样本、排除特殊年份、增加控制变量、替换核心解释变量并控制内生性问题后,该正向效应依然稳健。第二,创业活跃度在数字技术创新影响城市经济韧性的路径中发挥中介作用。信息化不仅正向调节了数字技术创新对城市经济韧性的影响,同时还强化了创业活跃度的中介效应。第三,数字技术创新的经济韧性促进效应在不同类型城市中表现出显著异质性。在中西部城市、科研投入不足城市及资源型城市,该促进作用更为显著。此外,拓展研究发现,数字技术创新对城市经济韧性还存在显著的正向空间溢出效应。

从政策层面来看,本文研究结论可为提升城市经济韧性提供以下启示:

第一,应高度重视数字技术创新发展,为提升城市经济韧性提供关键支撑。一是要深入贯彻落实创新驱动发展战略,不断提升数字政府建设效能。应创新政府治理模式,优化公共服务供给,加快政务数字化进程。例如,可通过构建政务云平台、政务大数据中心推动政务数据高效流通,全面提升政务服务质量与城市治理水平,从而增强城市面对风险时的适应性与恢复力。二是要加大数字技术创新的资金与人才投入,重点支持高新技术企业和科研机构在人工智能、区块链、云计算、大数据等关键领域开展技术攻关,着力解决"卡脖子"问题,夯实城市数字基础能力。三是要构建开放协同的创新生态体系,推动科技成果转化。可通过建立数字技术创新平台、孵化器、加速器等载体,加快数字技术与实体经济的深度融合,推动科研成果的规模化应用与市场转化。四是政府还应从制度层面提升数字技术标准化水平、加强数字人才培养,并积极推动国际交流合作,为城市经济韧性提升注入持续动能。

第二,加强信息化建设,激发创新创业活力。一方面,政府应根据城市发展阶段与功能定位,制定科学合理的信息化发展目标,确保其与城市发展战略相契合,切实提升城市管理效率与公共服务水平。建议强化顶层设计,加快新型信息基础设施建设,推动传统基础设施信息化升级改造。同时,要推动信息化与数字化融合发展,促进数字技术在城市规划、交通管理、环境保护与应急响应等领域的深度应用,增

①因篇幅所限,结果留存备索。

强城市对外部环境变化的感知能力与动态响应能力,进而提升城市经济的稳定性与韧性。另一方面,政府可通过完善创业政策法规、加强创业教育与培训、搭建创业服务平台、成立创新创业基金等方式,营造全民创新创业的良好氛围,激发城市活力,提升城市在复杂环境中的应变与抗压能力。考虑到信息化能够增强创业活跃度对城市经济韧性的促进效果,建议充分利用城市现有的信息资源与数字基础,开发具有本地特色的资源数据库,打造开放共享、协同共治的创业生态系统。通过优化创业信息获取渠道、强化数据支持能力,提升创业者在项目孵化、资源整合与风险管理方面的便利性,使信息化建设切实服务于城市创业体系的运转与管理,从而提升城市整体的运行效率与经济韧性。

第三,推动实现区域经济一体化,提高城市整体的抗冲击能力与经济韧性。一方面,要因地制宜开展数字技术创新。对于中西部城市和科技投入相对薄弱的城市,应实施差异化支持策略,加大对关键技术研发与数字技术应用的政策扶持力度,充分释放数字技术创新在提升城市经济韧性方面的潜力。建议推动要素跨区域高效流动与技术资源共享,打破行政区划与产业壁垒,构建优势互补、协同发展的数字技术产业格局。同时,应结合地方资源禀赋,支持产业链上下游企业协同发展,构建高效协同的区域数字创新生态系统。另一方面,应加强城市间协作,推动跨城市的技术交流与联动创新。建议建立区域性数字技术合作网络,提升区域间技术协同效率,构建"共享成果、联动发展"的机制框架,进一步缩小城市间在创新能力与经济韧性方面的差距。鼓励有条件的城市率先示范,通过积极推广典型经验,以点带面提升区域整体抗冲击能力与经济韧性。建议由数字技术创新基础较好的城市带动周边城市共同发展,构建区域一体化发展新格局,助力提升城市经济的整体韧性。

How Does Digital Technology Innovation Impact on Urban Economic Resilience in China.

An Analysis Based on Moderated Mediation Effect Model

WU Jianjun, WANG Xiaofeng & HUANG Fan
(School of Business, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract: Based on the panel data of 281 cities in China from 2003 to 2021, a moderated mediation effect model is constructed to analyze the comprehensive impact and mechanism of digital technology innovation on urban economic resilience. The results indicate that digital technology innovation significantly enhances urban economic resilience, and this conclusion has passed robustness and endogeneity tests. Heterogeneity analysis shows that the promotion effect of digital technology innovation on urban economic resilience is more significant in central and western cities, insufficient technology investment cities, and in resource-based cities. Mechanism testing shows that digital technology innovation enhances urban economic resilience by increasing entrepreneurial activity. Informationization not only enhances the positive impact of digital technology innovation on urban economic resilience, but also positively regulates the relationship between entrepreneurial activity and urban economic resilience, which means enhancing the mediating role of entrepreneurial activity. Digital technology innovation has a positively spatial spillover effect on urban economic resilience after further researches.

Key words: digital technology innovation; urban economic resilience; entrepreneurial activity level; informatization; moderated mediation effect

(责任校对 张伟平)